
Details on class implementation,
Interfaces and Polymorphism

Check out OnToInterfaces and
EventBasedProgramming from SVN

 Variable scope
 Packages recap
 Interfaces and polymorphism

 Scope: the region of a program in which a
variable can be accessed
◦ Parameter scope: the whole method body
◦ Local variable scope: from declaration to block end:
 public double myMethod() {
 double sum = 0.0;
 Point2D prev =
 this.pts.get(this.pts.size() - 1);
 for (Point2D p : this.pts) {
 sum += prev.getX() * p.getY();
 sum -= prev.getY() * p.getX();
 prev = p;
 }
 return Math.abs(sum / 2.0);
} Q1

 Member scope: anywhere in the class,
including before its declaration
◦ This lets methods call other methods later in the

class.

 public static class members can be
accessed from outside with “class qualified
names”
◦ Math.sqrt()
◦ System.in

Q2

public class TempReading {
 private double temp;

 public void setTemp(double temp) {
 … temp …

 }
 // …
}

 this.temp = temp;

What does this
“temp” refer

to? Always qualify field references
with this. It prevents accidental

shadowing.
Q3

 Static imports let us use unqualified names:
◦ import static java.lang.Math.PI;
◦ import static java.lang.Math.cos;
◦ import static java.lang.Math.sin;

 See the polygon.drawOn() method in the
DesigningClasses project

 Packages let us group
related classes

 We’ve been using them:
◦ javax.swing
◦ java.awt
◦ java.lang

 Java built-in Timer class?
◦ java.util.Timer, javax.swing.Timer
◦ Packages allow us to specify which we want to use.

 Package naming convention: reverse URLs
◦ Examples:
 edu.roseHulman.csse.courseware.scheduling
 com.xkcd.comicSearch

Specifies the
company or
organization

Groups related
classes as

company sees fit

Q4

 Can use import to get classes from other
packages:
◦ import java.awt.Rectangle;

 Suppose we have our own Rectangle class
and we want to use ours and Java’s?
◦ Can use “fully qualified names”:
 java.awt.Rectangle rect =
 new java.awt.Rectangle(10,20,30,40);

◦ U-G-L-Y, but sometimes needed.

 Express common operations that multiple
classes might have in common

 Make “client” code more reusable

 Provide method signatures and
documentation

 Do not provide method implementations or
fields

 Interface types are like contracts

◦ A class can promise to implement an interface
 That is, implement every method

◦ Client code knows that the class will have those

methods
 Compiler verifies this

◦ Any client code designed to use the interface type

can automatically use the class!

Charges Demo

Distinguishes
interfaces

from classes

Hollow,
closed

triangular
tip means

PointCharge
is a Charge

Q5

public interface Charge {
 /**
 * regular javadocs here
 */
 Vector forceAt(int x, int y);

 /**
 * regular javadocs here
 */
 void drawOn(Graphics2D g);
}

public class PointCharge implements Charge {
 …
}

interface, not class

No method
body, just a
semi-colon

No “public”,
automatically

are so

PointCharge promises to implement all the
methods declared in the Charge interface

Interfaces reduce coupling! Q6

 Can pass an instance of a class where an
interface type is expected
◦ But only if the class implements the interface

 We passed LinearCharges to Space’s
addCharge(Charge c) method without
changing Space!

 Use interface types for field, method
parameter, and return types whenever
possible

Q7

 Charge c = new PointCharge(…);
Vector v1 = c.forceAt(…);
c = new LinearCharge(…);
Vector v2 = c.forceAt(…);

 The type of the actual object determines the
method used.

 Origin:
◦ Poly many
◦ Morphism shape

 Classes implementing an interface give many
differently “shaped” objects for the interface
type

 Late Binding: choosing the right method
based on the actual type of the implicit
parameter at run time

Q8-Q9

I don’t even want this
package. Why did I

sign up for the
stinging insect of the
month club anyway?

 We say what to draw

 Java windowing
library:
◦ Draws it
◦ Gets user input
◦ Calls back to us with

events

 We handle events
Hmm, donuts

Gooey

 Many kinds of events:
◦ Mouse pressed, mouse released, mouse moved,

mouse clicked, button clicked, key pressed, menu
item selected, …

 We create event listener objects
◦ that implement the right interface
◦ that handle the event as we wish

 We register our listener with an event source
◦ Sources: buttons, menu items, graphics area, …

Q10

 Classes can be defined inside other classes or
methods

 Used for “smallish” helper classes

 Example: Ellipse2D.Double

 Often used for ActionListeners…

Outer class Inner class

Q11

 Sometimes very small helper classes are only
used once
◦ This is a job for an anonymous class!

 Anonymous no name
 A special case of inner classes

 Used for the simplest ActionListeners…

 Inner classes can access any variables in
surrounding scope

 Caveats:
◦ Local variables must be final
◦ Can only use instance fields of surrounding scope if

we’re inside an instance method

 Example:
◦ Prompt user for what porridge tastes like

Homework 9: Board Games

	CSSE 220 Day 9
	Questions?
	Today
	Variable Scope
	Member (Field or Method) Scope
	Overlapping Scope and Shadowing
	Last Bit of Static
	Packages
	Avoiding Package Name Clashes
	Qualified Names and Imports
	Interface Types
	Interface Types: Key Idea
	Example
	Charges UML
	Notation: In Code
	Updated Charges UML
	How does all this help reuse?
	Why is this OK?
	Polymorphism
	Package Tracking
	Graphical User Interfaces in Java
	Handling Events
	Using Inner Classes
	Anonymous Classes
	Inner Classes and Scope
	Work Time

